
profig Documentation
Release 0.5.1

Miguel Turner

Nov 01, 2019

Contents

1 Contents 3
1.1 Overview . 3
1.2 Guide . 4
1.3 API . 10
1.4 Recipes . 13
1.5 Development . 14
1.6 Release History . 15

Index 17

i

ii

profig Documentation, Release 0.5.1

profig is a straightforward configuration library for Python. Its objective is to make the most common tasks of config-
uration handling as simple as possible.

Contents 1

profig Documentation, Release 0.5.1

2 Contents

CHAPTER 1

Contents

1.1 Overview

profig is a straightforward configuration library for Python.

1.1.1 Motivation

Why another configuration library? The simple answer is that none of the available options give me everything I want,
with an API that I enjoy using. This library provides a lot of powerful functionality, but never at the cost of simplicity.

1.1.2 Features

• Automatic value conversion.

• Section nesting.

• Dict-like access.

• Single-file module with no dependencies.

• Extensible input/output formats.

• Built-in support for INI files and the Windows registry.

• Preserves ordering and comments of INI files.

• Full Unicode support.

• Supports Python 2.7+ and 3.2+.

3

https://travis-ci.org/dhagrow/profig

profig Documentation, Release 0.5.1

1.1.3 Installation

profig installs using easy_install or pip:

$ pip install profig

1.1.4 Example

Basic usage is cake. Let’s assume our config file looks like this:

[server]
host = 192.168.1.1
port = 9090

First, we specify the defaults and types to expect:

>>> cfg = profig.Config('server.cfg')
>>> cfg.init('server.host', 'localhost')
>>> cfg.init('server.port', 8080)

Then, we sync our current state with the state of the config file:

>>> cfg.sync()

As expected, we can access the updated values without undue effort, either directly:

>>> cfg['server.host']
'192.168.1.1'

Or by section. Notice that the type of the port option is preserved:

>>> server_cfg = cfg.section('server')
>>> server_cfg['port']
9090

1.1.5 Resources

• Documentation

• PyPI

• Repository

1.2 Guide

1.2.1 Sections

A Config object can be used directly without any initialization:

import profig
cfg = profig.Config()
cfg['server.host'] = '8.8.8.8'
cfg['server.port'] = 8181

4 Chapter 1. Contents

http://profig.rtfd.org/
https://pypi.python.org/pypi/profig
https://bitbucket.org/dhagrow/profig

profig Documentation, Release 0.5.1

Configuration keys are . delimited strings where each name refers to a section. In the example above, server is a
section name, and host and port are sections which are assigned values.

For a quick look at the hierarchical structure of the options, you can easily get the dict representation:

>>> cfg.as_dict()
{'server': {'host': '8.8.8.8', 'port': 8181}}

Section can also be organized and accessed in hierarchies:

>>> cfg['server.port']
8181
>>> cfg.section('server').as_dict()
{'host': 'localhost', 'port': 8181}

1.2.2 Initialization

One of the most useful features of the profig library is the ability to initialize the options that are expected to be set
on a Config object.

If you were to sync the following config file without any initialization:

[server]
host = 127.0.0.1
port = 8080

The port number would be interpreted as a string, and you would have to convert it manually. You can avoid doing
this each time you access the value by using the init() method:

>>> cfg.init('server.host', '127.0.0.1')
>>> cfg.init('server.port', 8080, int)

The second argument to init() specifies a default value for the option. The third argument is optional and is used
by an internal Coercer to automatically (de)serialize any value that is set for the option. If the third argument is not
provided, the type of the default value will be used to select the correct coercer.

1.2.3 Strict Mode

Strict mode can be enabled by passing strict=True to the Config constructor:

>>> cfg = profig.Config(strict=True)
or
>>> cfg.strict = True

By default, Config objects can be assigned a new value simply by setting the value on a key, just as with the standard
dict. When strict mode is enabled, however, assignments are only allowed for keys that have already been initialized
using init().

Strict mode prevents typos in the names of configuration options. In addition, any sync performed while in strict mode
will clear old or deprecated options from the output file.

1.2.4 Automatic Typing (Coercion)

Automatic typing is referred to as “coercion” within the profig library.

1.2. Guide 5

profig Documentation, Release 0.5.1

Functions that adapt (object -> string) or convert (string -> object) values are referred to as “coercers”.

• Values are “adapted” into strings.

• Strings are “converted” into values.

Defining Types

Type information can be assigned by initializing a key with a default value:

>>> cfg.init('server.port', 8080)
>>> cfg.sync()
>>> port = cfg['server.port']
>>> port
9090
>>> type(port)
<class 'int'>

When a type cannot be easily inferred, a specific type can by specified as the third argument to init():

>>> cfg.init('editor.open_files', [], 'path_list')

In this case we are using a custom coercer type that has been registered to handle lists of paths. Now, supposing we
have the following in a config file:

[editor]
open_files = profig.py:test_profig.py

We can the sync the config file, and access the stored value:

>>> cfg.sync()
>>> cfg['editor.open_files']
['profig.py', 'test_profig.py']

We can look at how the value is stored in the config file by using the section directly:

>>> sect = cfg.section('editor.open_files')
>>> sect.value(convert=False)
'profig.py:test_profig.py'

Note: When using coercion, it is important to take into account that, by default, no validation of the values is
performed. It is, however, simple to have a coercer validate as well. See Using Coercers as Validators for details.

Adding Coercers

Functions that define how an object is coerced (adapted or converted) can be defined using the Coercer object that
is accessible as an attribute of the root Config object.

Defining a new coercer (or overriding an existing one) is as simple as passing two functions to register(). For
example, a simple coercer for a bool type could be defined like this:

>>> cfg.coercer.register(bool, lambda x: str(int(x)), lambda x: bool(int(x)))

6 Chapter 1. Contents

profig Documentation, Release 0.5.1

The first argument to register() represents a type value that will be used to determine the correct coercer to use. A
class object, when available, is most convenient, because it allows using a call to type(obj) to determine which coercer
to use. However, any value can be used for the registration, including, e.g. strings or tuples.

The second argument specifies how to adapt a value to a string, while the third argument specifies host to convert a
string to a value.

Using Coercers as Validators

By default, a coercer will only raise exceptions if there is a fundamental incompatibility in the values it is trying to
coerce. What this means is that even if you register a key with a type of int, no restriction is placed on the value that
can actually be set for the key. This can lead to unexpected errors:

>>> cfg.init('default.value', 1) # sets the type of the key to 'int'
>>> cfg['default.value'] = 4.5 # a float value can be set

sync the float value to the config file
>>> buf = io.BytesIO()
>>> cfg.sync(buf)
>>> buf.getvalue()
'[default]\nvalue: 4.5\n'

here, we change the float value
>>> buf = io.BytesIO('[default]\nvalue: 5.6\n')
>>> cfg.sync(buf)
>>> cfg['default.value'] # this now raises an exception
Traceback (most recent call last):
...
ConvertError: invalid literal for int() with base 10: '5.6'

This behavior can be changed by defining or overriding coercers in order to, for example, raise exceptions for unex-
pected ranges of inputs or other restrictions that should be in place for a given configuration value.

1.2.5 Synchronization

A sync is a combination of the read and write operations, executed in the following order:

1. Read in the changed values from all sources, except the values that have changed on the config object since the
last time it was synced.

2. Write any values changed on the config object back to the primary source.

This is done using the sync() method:

>>> cfg.sync('app.cfg')

After a call to sync(), a new file with the following contents will be created in the current working directory:

[server]
host = 127.0.0.1
port = 8080

1.2.6 Sources

The sources a config object uses when it syncs can also be set in the Config constructor:

1.2. Guide 7

profig Documentation, Release 0.5.1

>>> cfg = profig.Config('app.cfg')

Sources can be either paths or file objects. Multiple sources can be provided:

>>> cfg = profig.Config('<appdir>/app.cfg', '<userdir>/app.cfg', '<sysdir>/app.cfg')

If more than one source is provided then a sync will update the config object with values from each of the sources in
the order given. It will then write the values changed on the config object back to the first source.

Once sources have been provided, they will be used for any future syncs.

>>> cfg.sync()

1.2.7 Formats

A Format subclass defines how a configuration should be read/written from/to a source.

profig provides Format subclasses for both INI formatted files, and the Windows registry.

INI

INIFormat Syncs configuration with a file based on the standard INI format.

Because INIFormat is the default, an INI file can be sourced as follows:

>>> cfg = profig.Config('~/.config/black_knight.cfg')

The INI file format has no strict standard, however profig tries not to stray far from the most commonly supported
features. In particular, it should read any INI file that the standard library’s configparser can read. If it does not, please
file an issue so that the discrepency can be fixed.

The only deviation profig makes is to support the fact that it is possible to set a value on any ConfigSection,
including those at the top-level, which become section headers when output to an INI file. This is represented in the
INI files as values set on the header:

[server] = true
host = localhost

Windows Registry

RegistryFormat Syncs configuration with the Windows registry.

To use the RegistryFormat, you have to specify which format to use and specify a path relative to
HKEY_CURRENT_USER (configurable as a class attribute):

>>> cfg = profig.Config(r'Software\BlackKnight', format='registry')

RegistryFormat is, of course, only available on Windows machines.

Support for additional formats can be added easily by subclassing Format.

8 Chapter 1. Contents

http://en.wikipedia.org/wiki/INI_file
https://docs.python.org/3/library/configparser.html
https://bitbucket.org/dhagrow/profig/issues

profig Documentation, Release 0.5.1

Defining a new Format

To add support for a new format you must subclass Format() and override the, read() and write() methods.

read() should assign values to config, which is a local instance of the Config object. A context value can
optionally be returned which will be passed to write() during a sync. It can be used, for example, to track comments
and ordering of the source. None can be returned if no context is needed.

write() accepts any context returned from a call to read() and should read the values to write from config.

1.2.8 Unicode

profig fully supports unicode. The encoding to use for all encoding/decoding operations can be set in the Config
constructor:

>>> cfg = profig.Config(encoding='utf-8')

The default is to use the system’s preferred encoding.

Keys are handled in a special way. Both byte-string keys and unicode keys are considered equivalent, but are stored
internally as unicode keys. If a byte-string key is used, it will be decoded using the configured encoding.

Values are coerced into a unicode representation before being output to a config file. Note that this means that by
specifically storing a byte-string as a value, profig will interpret the value as binary data. The specifics of how
binary data is stored depends on the format being used. The default format (INIFormat) operates on binary files,
therefore binary data is written directly to its sources.

So, if we consider the following examples using a Python 2 interpreter, where str objects are byte-strings:

>>> cfg['default.a'] = '\x00asdf'

Will be stored to a config file as binary data:

[default]
a = \x00asdf

If this is not the desired behavior, there are other options available when calling init(). First, we can explicitely use
unicode values:

>>> cfg.init('a', u'asdf')

This ensures that only data matching the set encoding will be accepted.

If we expect the data to be binary data, but don’t want to store it directly, we can use one of the available encodings:
‘hex’, and ‘base64’:

>>> cfg.init('a', 'asdf', 'hex')

Or third, we can register different coercers for byte-strings:

>>> cfg.coercer.register(bytes, compress, decompress)

1.2. Guide 9

profig Documentation, Release 0.5.1

1.3 API

1.3.1 Config

The primary API classes.

class profig.Config(*sources, **kwargs)
The root configuration object.

Any number of sources can be set using sources. These are the sources that will be using when calling sync().

The format of the sources can be set using format. This can be the registered name of a format, such as “ini”, or
a Format class or instance.

An encoding can be set using encoding. If encoding is not specified the encoding used is platform dependent:
locale.getpreferredencoding(False).

Strict mode can be enabled by setting strict to True. In strict mode, accessing keys that have not been initialized
will raise an InvalidSectionError.

The dict class used internally can be set using dict_type. By default an OrderedDict is used.

A Coercer can be set using coercer. If no coercer is passed in, a default will be created. If None is passed in,
no coercer will be set and values will be read from and written to sources directly.

This is a subclass of ConfigSection.

classmethod known_formats()
Returns the formats registered with this class.

set_format(format)
Sets the format to use when processing sources.

format can be the registered name of a format, such as “ini”, or a Format class or instance.

format
The Format to use to process sources.

class profig.ConfigSection(name, parent)
Represents a group of configuration options.

This class is not meant to be instantiated directly.

adapt(encode=True)
value -> str

as_dict(flat=False, dict_type=None)
Returns the configuration’s keys and values as a dictionary.

If flat is True, returns a single-depth dict with . delimited keys.

If dict_type is not None, it should be the mapping class to use for the result. Otherwise, the dict_type set
by __init__() will be used.

convert(string, decode=True)
str -> value

default()
Get the section’s default value.

get(key, default=None)
If key exists, returns the value. Otherwise, returns default.

If default is not given, it defaults to None, so that this method never raises an exception.

10 Chapter 1. Contents

profig Documentation, Release 0.5.1

init(key, default, type=None, comment=None)
Initializes key to the given default value.

If type is not provided, the type of the default value will be used.

If a value is already set for the section at key, it will be coerced to type.

If a comment is provided, it may be written out to the config file in a manner consistent with the active
Format.

read(*sources, **kwargs)
Reads config values.

If sources are provided, read only from those sources. Otherwise, write to the sources in sources. A
format for sources can be set using format.

reset(recurse=True, clean=True)
Resets this section to it’s default value, leaving it in the same state as after a call to ConfigSection.
init().

If recurse is True, does the same to all the section’s children. If clean is True, also clears the dirty flag on
all sections.

section(key, create=None)
Returns a section object for key.

create will default to False when in strict mode. Otherwise it defaults to True.

If there is no existing section for key, and create is False, an InvalidSectionError is thrown.

sections(recurse=False, only_valid=False)
Returns the sections that are children to this section.

If recurse is True, returns grandchildren as well. If only_valid is True, returns only valid sections.

set_default(value)
Set the section’s default value.

set_value(value)
Set the section’s value.

sync(*sources, **kwargs)
Reads from sources and writes any changes back to the first source.

If sources are provided, syncs only those sources. Otherwise, syncs the sources in sources.

format can be used to override the format used to read/write from the sources.

value()
Get the section’s value.

write(source=None, format=None)
Writes config values.

If source is provided, write only to that source. Otherwise, write to the first source in sources. A format
for source can be set using format. format is otherwise ignored.

dirty
True if this section’s value has changed since the last write. Read-only.

has_children
True if this section has child sections. Read-only.

is_default
True if this section has a default value and its current value is equal to the default value. Read-only.

1.3. API 11

profig Documentation, Release 0.5.1

key
The section’s key. Read-only.

name
The section’s name. Read-only.

parent
The section’s parent or None. Read-only.

root
Returns the root ConfigSection object. Read-only.

type
The type used for coercing the value for this section. Read only.

valid
True if this section has a valid value. Read-only.

1.3.2 Formats

Formats define de/serialization specifics.

class profig.Format

close(file)

flush(file)

open(cfg, source, mode=’r’, binary=True)
Returns a file object.

If source is a file object, returns source. mode can be ‘r’ or ‘w’. If mode is ‘w’, The file object will be
truncated. If binary is True, the file will be opened in binary mode (‘rb’ or ‘wb’).

read(cfg, file)
Reads file to update cfg. Must be implemented in a subclass.

write(cfg, file, values=None)
Writes cfg to file. Must be implemented in a subclass.

error_mode
Specifies how the format should react to errors raised when processing a source.

Must be one of the following:

• ignore - Ignore all errors completely.

• warning - Log a warning for any errors.

• exception - Raise an exception for any error.

Only ‘exception’ will cause the format to stop processing a source.

error_modes = frozenset({'exception', 'warning', 'ignore'})
The supported error modes.

name = None
A convenient name for the format.

class profig.INIFormat
Implements reading/writing configurations from/to INI formatted files.

A header will be written for each section in the root config object.

12 Chapter 1. Contents

profig Documentation, Release 0.5.1

class profig.RegistryFormat
Implements reading/writing configurations from/to the Windows registry.

Sections with children will be created as keys. Those without children will be created as values.

Keys will be created relative to RegistryFormat.base_key, which defaults to HKEY_CURRENT_USER.

1.3.3 Coercer

A Coercer handles the conversion of values to/from a human-readable string representation.

class profig.Coercer(register_defaults=True, register_qt=None)
The coercer class, with which adapters and converters can be registered.

adapt(value, type=None)
Adapt a value from the given type (type to string). If type is not provided the type of the value will be used.

convert(value, type)
Convert a value to the given type (string to type).

register(type, adapter, converter)
Register an adapter and converter for the given type.

register_adapter(type, adapter)
Register an adapter (type to string) for the given type.

register_choice(type, choices)
Registers an adapter and converter for a choice of values. Values passed into adapt() or convert()
for type will have to be one of the choices. choices must be a dict that maps converted->adapted represen-
tations.

register_converter(type, converter)
Register a converter (string to type) for the given type.

1.4 Recipes

1.4.1 Setting Values from the Command-Line

It can be convenient to provide users with the ability to override config options using command-line switches. Here is
an example of how that can be done using argparse:

cfg = profig.Config()
cfg.init('server.host', 'localhost')
cfg.init('server.port', 8080)

parser = argparse.ArgumentParser()
parser.add_argument('-O', dest='options', action='append',

metavar='<key>:<value>', help='Overrides an option in the config file')

args = parser.parse_args(['-O', 'server.port:9090'])

update option values
cfg.update(opt.split(':') for opt in args.options)

print(cfg['server.port']) # -> 9090

If you need to provide a list of available options to the user, you can simply iterate over the config object:

1.4. Recipes 13

profig Documentation, Release 0.5.1

>>> for k in cfg:
... print(k)
server.host
server.port

You can also restrict the options that can be set from the command-line to a specific section:

args = parser.parse_args(['-O', 'port:9090'])
cfg.section('server').update(opt.split(':') for opt in args.options)

1.4.2 Multiprocess Sychronization

One way to synchronize a config file across multiple processes is to use a lock file. This allows processes to make a
modifications to a config file in a safe way and have that change be reflected across all other processes when they sync
again.

Here is an example using the lockfile module:

>>> lock = lockfile.FileLock('.cfglock')
>>> with lock:
... cfg.sync()

1.4.3 Serialization

Because Config objects are based on dicts, it is easy to read/write configs from a serialization format such as JSON
or msgpack:

>>> import json
>>> s = json.dumps(cfg.as_dict())
>>> cfg.update(json.loads(s))

1.4.4 Format Strings

Config objects can be used directly in format strings in several ways:

>>> '{0[server.host]}:{0[server.port]}'.format(cfg)
localhost:8080
>>> '{c[server.host]}:{c[server.port]}'.format(c=cfg)
localhost:8080
>>> '{host}:{port}'.format(**c.section('server'))
localhost:8080

In my opinion, this largely resolves the use cases for the interpolation feature of the stdlib configparser.

1.5 Development

All contributions to profig are welcome. Begin by forking the central repository:

$ hg clone ssh://hg@bitbucket.org/dhagrow/profig

14 Chapter 1. Contents

https://pypi.python.org/pypi/lockfile
https://docs.python.org/3/library/configparser.html

profig Documentation, Release 0.5.1

1.5.1 Coding Style

Officially, profig follows the guidelines outlined by PEP8.

1.5.2 Tests

All tests are in tests.py. They can be run with either Python 2 or Python 3:

$ python2 -m tests
.................................
--
Ran 33 tests in 0.425s

OK
$ python3 -m tests
.................................
--
Ran 33 tests in 0.409s

OK

1.6 Release History

0.5.1 (2019-10-24)

• removed additional built-in formats (to avoid unnecessary bloat)

0.5.0 (2019-09-26)

• bugfixes

• experimentation with built-in TOML, YAML, and MessagePack formats

0.4.1 (2015-01-22)

• coercer support for datetime objects

• “strict” mode fixes

0.4.0 (2014-10-27)

• added “strict” mode to support safer configurations

• Windows registry format supports all types

• bugfixes/simplifications/clarifications

0.3.3 (2014-07-11)

• bugfixes

0.3.2 (2014-06-30)

• added support for the Windows registry

• bugfixes

0.3.1 (2014-06-04)

• fixed release package

0.3.0 (2014-06-04)

1.6. Release History 15

http://legacy.python.org/dev/peps/pep-0008/

profig Documentation, Release 0.5.1

• byte-string values are read/written directly from/to sources.

• added support for Python 3.2.

• bugfixes

0.2.9 (2014-05-27)

• bugfixes

• new syntax for sections with both children, and a value: [section] = value

0.2.8 (2014-04-11)

• INI format is now the default

• custom ProfigFormat has been removed

• can now get/set comments for keys

• comments and whitespace read from sources are preserved

• filtering of keys when syncing has been removed (temporarily?)

0.2.7 (2014-03-29)

• improved INI support

• bugfixes

0.2.6 (2014-03-26)

• full unicode support

0.2.5 (2014-03-21)

• fix broken Python 3 compatibility

0.2.4 (2014-03-21)

• added support for Python 2

• bugfixes

0.2.3 and earlier (2014-03-12)

• initial releases

16 Chapter 1. Contents

Index

A
adapt() (profig.Coercer method), 13
adapt() (profig.ConfigSection method), 10
as_dict() (profig.ConfigSection method), 10

C
close() (profig.Format method), 12
Coercer (class in profig), 13
Config (class in profig), 10
ConfigSection (class in profig), 10
convert() (profig.Coercer method), 13
convert() (profig.ConfigSection method), 10

D
default() (profig.ConfigSection method), 10
dirty (profig.ConfigSection attribute), 11

E
error_mode (profig.Format attribute), 12
error_modes (profig.Format attribute), 12

F
flush() (profig.Format method), 12
Format (class in profig), 12
format (profig.Config attribute), 10

G
get() (profig.ConfigSection method), 10

H
has_children (profig.ConfigSection attribute), 11

I
init() (profig.ConfigSection method), 10
is_default (profig.ConfigSection attribute), 11

K
key (profig.ConfigSection attribute), 11

known_formats() (profig.Config class method), 10

N
name (profig.ConfigSection attribute), 12
name (profig.Format attribute), 12

O
open() (profig.Format method), 12

P
parent (profig.ConfigSection attribute), 12
profig.INIFormat (built-in class), 12
profig.RegistryFormat (built-in class), 12

R
read() (profig.ConfigSection method), 11
read() (profig.Format method), 12
register() (profig.Coercer method), 13
register_adapter() (profig.Coercer method), 13
register_choice() (profig.Coercer method), 13
register_converter() (profig.Coercer method),

13
reset() (profig.ConfigSection method), 11
root (profig.ConfigSection attribute), 12

S
section() (profig.ConfigSection method), 11
sections() (profig.ConfigSection method), 11
set_default() (profig.ConfigSection method), 11
set_format() (profig.Config method), 10
set_value() (profig.ConfigSection method), 11
sync() (profig.ConfigSection method), 11

T
type (profig.ConfigSection attribute), 12

V
valid (profig.ConfigSection attribute), 12
value() (profig.ConfigSection method), 11

17

profig Documentation, Release 0.5.1

W
write() (profig.ConfigSection method), 11
write() (profig.Format method), 12

18 Index

	Contents
	Overview
	Guide
	API
	Recipes
	Development
	Release History

	Index

