

Behold, profig’s documentation!

profig is a straightforward configuration library for Python. Its
objective is to make the most common tasks of configuration handling as
simple as possible.

Contents

	Overview
	Motivation

	Features

	Installation

	Example

	Resources

	Guide
	Sections

	Initialization

	Strict Mode

	Automatic Typing (Coercion)

	Synchronization

	Sources

	Formats

	Unicode

	API
	Config

	Formats

	Coercer

	Recipes
	Setting Values from the Command-Line

	Multiprocess Sychronization

	Serialization

	Format Strings

	Development
	Coding Style

	Tests

	Release History

Overview

profig is a straightforward configuration library for Python.

[image: _images/profig.svg]
 [https://travis-ci.org/dhagrow/profig]
Motivation

Why another configuration library? The simple answer is that none of the
available options give me everything I want, with an API that I enjoy using.
This library provides a lot of powerful functionality, but never at the cost of
simplicity.

Features

	Automatic value conversion.

	Section nesting.

	Dict-like access.

	Single-file module with no dependencies.

	Extensible input/output formats.

	Built-in support for INI files and the Windows registry.

	Preserves ordering and comments of INI files.

	Full Unicode support.

	Supports Python 2.7+ and 3.2+.

Installation

profig installs using easy_install or pip:

$ pip install profig

Example

Basic usage is cake. Let’s assume our config file looks like this:

[server]
host = 192.168.1.1
port = 9090

First, we specify the defaults and types to expect:

>>> cfg = profig.Config('server.cfg')
>>> cfg.init('server.host', 'localhost')
>>> cfg.init('server.port', 8080)

Then, we sync our current state with the state of the config file:

>>> cfg.sync()

As expected, we can access the updated values without undue effort, either
directly:

>>> cfg['server.host']
'192.168.1.1'

Or by section. Notice that the type of the port option is preserved:

>>> server_cfg = cfg.section('server')
>>> server_cfg['port']
9090

Resources

	Documentation [http://profig.rtfd.org/]

	PyPI [https://pypi.python.org/pypi/profig]

	Repository [https://bitbucket.org/dhagrow/profig]

Guide

Sections

A Config object can be used directly without any initialization:

import profig
cfg = profig.Config()
cfg['server.host'] = '8.8.8.8'
cfg['server.port'] = 8181

Configuration keys are . delimited strings where each name
refers to a section. In the example above, server is a section name, and
host and port are sections which are assigned values.

For a quick look at the hierarchical structure of the options, you can easily
get the dict representation:

>>> cfg.as_dict()
{'server': {'host': '8.8.8.8', 'port': 8181}}

Section can also be organized and accessed in hierarchies:

>>> cfg['server.port']
8181
>>> cfg.section('server').as_dict()
{'host': 'localhost', 'port': 8181}

Initialization

One of the most useful features of the profig library is the ability
to initialize the options that are expected to be set on a
Config object.

If you were to sync the following config file without any initialization:

[server]
host = 127.0.0.1
port = 8080

The port number would be interpreted as a string, and you would have to
convert it manually. You can avoid doing this each time you access the value
by using the init() method:

>>> cfg.init('server.host', '127.0.0.1')
>>> cfg.init('server.port', 8080, int)

The second argument to init() specifies a default
value for the option. The third argument is optional and is used by an internal
Coercer to automatically (de)serialize any value that is set
for the option. If the third argument is not provided, the type of the default
value will be used to select the correct coercer.

Strict Mode

Strict mode can be enabled by passing strict=True to the
Config constructor:

>>> cfg = profig.Config(strict=True)
or
>>> cfg.strict = True

By default, Config objects can be assigned a new value
simply by setting the value on a key, just as with the standard dict.
When strict mode is enabled, however, assignments are only allowed for keys
that have already been initialized using init().

Strict mode prevents typos in the names of configuration options. In addition,
any sync performed while in strict mode will clear old or deprecated options
from the output file.

Automatic Typing (Coercion)

Automatic typing is referred to as “coercion” within the profig library.

Functions that adapt (object -> string) or convert (string -> object) values
are referred to as “coercers”.

	Values are “adapted” into strings.

	Strings are “converted” into values.

Defining Types

Type information can be assigned by initializing a key with a default value:

>>> cfg.init('server.port', 8080)
>>> cfg.sync()
>>> port = cfg['server.port']
>>> port
9090
>>> type(port)
<class 'int'>

When a type cannot be easily inferred, a specific type can by specified as
the third argument to init():

>>> cfg.init('editor.open_files', [], 'path_list')

In this case we are using a custom coercer type that has been registered to
handle lists of paths.
Now, supposing we have the following in a config file:

[editor]
open_files = profig.py:test_profig.py

We can the sync the config file, and access the stored value:

>>> cfg.sync()
>>> cfg['editor.open_files']
['profig.py', 'test_profig.py']

We can look at how the value is stored in the config file by using the
section directly:

>>> sect = cfg.section('editor.open_files')
>>> sect.value(convert=False)
'profig.py:test_profig.py'

Note

When using coercion, it is important to take into account that, by
default, no validation of the values is performed. It is, however, simple
to have a coercer validate as well. See Using Coercers as Validators
for details.

Adding Coercers

Functions that define how an object is coerced (adapted or converted) can be
defined using the Coercer object that is accessible as an
attribute of the root Config object.

Defining a new coercer (or overriding an existing one) is as simple as passing
two functions to register(). For example, a simple
coercer for a bool type could be defined like this:

>>> cfg.coercer.register(bool, lambda x: str(int(x)), lambda x: bool(int(x)))

The first argument to register() represents a type value
that will be used to determine the correct coercer to use. A class object,
when available, is most convenient, because it allows using a call to
type(obj) to determine which coercer to use. However, any value can be
used for the registration, including, e.g. strings or tuples.

The second argument specifies how to adapt a value to a string, while the
third argument specifies host to convert a string to a value.

Using Coercers as Validators

By default, a coercer will only raise exceptions if there is a fundamental
incompatibility in the values it is trying to coerce. What this means is that
even if you register a key with a type of int, no restriction is placed on
the value that can actually be set for the key. This can lead to unexpected
errors:

>>> cfg.init('default.value', 1) # sets the type of the key to 'int'
>>> cfg['default.value'] = 4.5 # a float value can be set

sync the float value to the config file
>>> buf = io.BytesIO()
>>> cfg.sync(buf)
>>> buf.getvalue()
'[default]\nvalue: 4.5\n'

here, we change the float value
>>> buf = io.BytesIO('[default]\nvalue: 5.6\n')
>>> cfg.sync(buf)
>>> cfg['default.value'] # this now raises an exception
Traceback (most recent call last):
...
ConvertError: invalid literal for int() with base 10: '5.6'

This behavior can be changed by defining or overriding coercers in order to,
for example, raise exceptions for unexpected ranges of inputs or other
restrictions that should be in place for a given configuration value.

Synchronization

A sync is a combination of the read and write operations, executed in the
following order:

	Read in the changed values from all sources, except the values that have
changed on the config object since the last time it was synced.

	Write any values changed on the config object back to the primary
source.

This is done using the sync() method:

>>> cfg.sync('app.cfg')

After a call to sync(), a new file with the following
contents will be created in the current working directory:

[server]
host = 127.0.0.1
port = 8080

Sources

The sources a config object uses when it syncs can also be set in the
Config constructor:

>>> cfg = profig.Config('app.cfg')

Sources can be either paths or file objects. Multiple sources can be provided:

>>> cfg = profig.Config('<appdir>/app.cfg', '<userdir>/app.cfg', '<sysdir>/app.cfg')

If more than one source is provided then a sync will update the config
object with values from each of the sources in the order given. It will
then write the values changed on the config object back to the first source.

Once sources have been provided, they will be used for any future syncs.

>>> cfg.sync()

Formats

A Format subclass defines how a configuration should be
read/written from/to a source.

profig provides Format subclasses for both INI
formatted files, and the Windows registry.

INI

	INIFormat

	Syncs configuration with a file based on the standard INI format.

Because INIFormat is the default, an INI file can be sourced
as follows:

>>> cfg = profig.Config('~/.config/black_knight.cfg')

The INI file format has no strict standard [http://en.wikipedia.org/wiki/INI_file], however profig tries not
to stray far from the most commonly supported features. In particular, it
should read any INI file that the standard library’s configparser [https://docs.python.org/3/library/configparser.html] can read.
If it does not, please file an issue [https://bitbucket.org/dhagrow/profig/issues] so that the discrepency can be fixed.

The only deviation profig makes is to support the fact that it is
possible to set a value on any ConfigSection, including
those at the top-level, which become section headers when output to an INI
file. This is represented in the INI files as values set on the header:

[server] = true
host = localhost

Windows Registry

	RegistryFormat

	Syncs configuration with the Windows registry.

To use the RegistryFormat, you have to specify which format
to use and specify a path relative to HKEY_CURRENT_USER (configurable as a
class attribute):

>>> cfg = profig.Config(r'Software\BlackKnight', format='registry')

RegistryFormat is, of course, only available on Windows
machines.

Support for additional formats can be added easily by subclassing
Format.

Defining a new Format

To add support for a new format you must subclass Format() and
override the, read() and write()
methods.

read() should assign values to
config, which is a local instance of the
Config object. A context value can optionally be returned
which will be passed to write() during a sync. It can be
used, for example, to track comments and ordering of the source. None can be
returned if no context is needed.

write() accepts any context returned from a call to
read() and should read the values to write from
config.

Unicode

profig fully supports unicode. The encoding to use for all
encoding/decoding operations can be set in the Config
constructor:

>>> cfg = profig.Config(encoding='utf-8')

The default is to use the system’s preferred encoding.

Keys are handled in a special way. Both byte-string keys and unicode keys
are considered equivalent, but are stored internally as unicode keys. If
a byte-string key is used, it will be decoded using the configured encoding.

Values are coerced into a unicode representation before being output to a
config file. Note that this means that by specifically storing a byte-string
as a value, profig will interpret the value as binary data. The specifics
of how binary data is stored depends on the format being used. The default
format (INIFormat) operates on binary files, therefore binary
data is written directly to its sources.

So, if we consider the following examples using a Python 2 interpreter,
where str objects are byte-strings:

>>> cfg['default.a'] = '\x00asdf'

Will be stored to a config file as binary data:

[default]
a = \x00asdf

If this is not the desired behavior, there are other options available when
calling init(). First, we can explicitely use
unicode values:

>>> cfg.init('a', u'asdf')

This ensures that only data matching the set encoding will be accepted.

If we expect the data to be binary data, but don’t want to store it directly,
we can use one of the available encodings: ‘hex’, and ‘base64’:

>>> cfg.init('a', 'asdf', 'hex')

Or third, we can register different coercers for byte-strings:

>>> cfg.coercer.register(bytes, compress, decompress)

API

Config

The primary API classes.

	
class profig.Config(*sources, **kwargs)

	The root configuration object.

Any number of sources can be set using sources. These are the sources
that will be using when calling sync().

The format of the sources can be set using format. This can be the
registered name of a format, such as “ini”, or a Format
class or instance.

An encoding can be set using encoding. If encoding is not specified
the encoding used is platform dependent: locale.getpreferredencoding(False).

Strict mode can be enabled by setting strict to True. In strict mode,
accessing keys that have not been initialized will raise an
InvalidSectionError.

The dict class used internally can be set using dict_type. By default
an OrderedDict is used.

A Coercer can be set using coercer. If no coercer is
passed in, a default will be created. If None is passed in, no coercer
will be set and values will be read from and written to sources directly.

This is a subclass of ConfigSection.

	
classmethod known_formats()

	Returns the formats registered with this class.

	
set_format(format)

	Sets the format to use when processing sources.

format can be the registered name of a format, such as
“ini”, or a Format class or instance.

	
format

	The Format to use to process sources.

	
class profig.ConfigSection(name, parent)

	Represents a group of configuration options.

This class is not meant to be instantiated directly.

	
adapt(encode=True)

	value -> str

	
as_dict(flat=False, dict_type=None)

	Returns the configuration’s keys and values as a dictionary.

If flat is True, returns a single-depth dict with .
delimited keys.

If dict_type is not None, it should be the mapping class to use
for the result. Otherwise, the dict_type set by
__init__() will be used.

	
convert(string, decode=True)

	str -> value

	
default()

	Get the section’s default value.

	
get(key, default=None)

	If key exists, returns the value. Otherwise, returns default.

If default is not given, it defaults to None, so that this
method never raises an exception.

	
init(key, default, type=None, comment=None)

	Initializes key to the given default value.

If type is not provided, the type of the default value will be used.

If a value is already set for the section at key, it will be
coerced to type.

If a comment is provided, it may be written out to the config
file in a manner consistent with the active Format.

	
read(*sources, **kwargs)

	Reads config values.

If sources are provided, read only from those sources. Otherwise,
write to the sources in sources. A format for
sources can be set using format.

	
reset(recurse=True, clean=True)

	Resets this section to it’s default value, leaving it
in the same state as after a call to ConfigSection.init().

If recurse is True, does the same to all the section’s children.
If clean is True, also clears the dirty flag on all sections.

	
section(key, create=None)

	Returns a section object for key.

create will default to False when in strict mode. Otherwise it
defaults to True.

If there is no existing section for key, and create is False, an
InvalidSectionError is thrown.

	
sections(recurse=False, only_valid=False)

	Returns the sections that are children to this section.

If recurse is True, returns grandchildren as well.
If only_valid is True, returns only valid sections.

	
set_default(value)

	Set the section’s default value.

	
set_value(value)

	Set the section’s value.

	
sync(*sources, **kwargs)

	Reads from sources and writes any changes back to the first source.

If sources are provided, syncs only those sources. Otherwise,
syncs the sources in sources.

format can be used to override the format used to read/write from
the sources.

	
value()

	Get the section’s value.

	
write(source=None, format=None)

	Writes config values.

If source is provided, write only to that source. Otherwise, write to
the first source in sources. A format for
source can be set using format. format is otherwise ignored.

	
dirty

	True if this section’s value has changed since the last write. Read-only.

	
has_children

	True if this section has child sections. Read-only.

	
is_default

	True if this section has a default value and its current value
is equal to the default value. Read-only.

	
key

	The section’s key. Read-only.

	
name

	The section’s name. Read-only.

	
parent

	The section’s parent or None. Read-only.

	
root

	Returns the root ConfigSection object. Read-only.

	
type

	The type used for coercing the value for this section.
Read only.

	
valid

	True if this section has a valid value. Read-only.

Formats

Formats define de/serialization specifics.

	
class profig.Format

	
	
close(file)

	

	
flush(file)

	

	
open(cfg, source, mode='r', binary=True)

	Returns a file object.

If source is a file object, returns source.
mode can be ‘r’ or ‘w’. If mode is ‘w’, The file object will be
truncated.
If binary is True, the file will be opened in binary mode
(‘rb’ or ‘wb’).

	
read(cfg, file)

	Reads file to update cfg. Must be implemented in a subclass.

	
write(cfg, file, values=None)

	Writes cfg to file. Must be implemented in a subclass.

	
error_mode

	Specifies how the format should react to errors raised when
processing a source.

Must be one of the following:

	ignore - Ignore all errors completely.

	warning - Log a warning for any errors.

	exception - Raise an exception for any error.

Only ‘exception’ will cause the format to stop processing a source.

	
error_modes = frozenset({'ignore', 'exception', 'warning'})

	The supported error modes.

	
name = None

	A convenient name for the format.

	
class profig.INIFormat

	Implements reading/writing configurations from/to INI formatted files.

A header will be written for each section in the root config object.

	
class profig.RegistryFormat

	Implements reading/writing configurations from/to the Windows
registry.

Sections with children will be created as keys. Those without children
will be created as values.

Keys will be created relative to
RegistryFormat.base_key, which defaults to
HKEY_CURRENT_USER.

Coercer

A Coercer handles the conversion of values to/from a human-readable
string representation.

	
class profig.Coercer(register_defaults=True, register_qt=None)

	The coercer class, with which adapters and converters can be registered.

	
adapt(value, type=None)

	Adapt a value from the given type (type to string). If
type is not provided the type of the value will be used.

	
convert(value, type)

	Convert a value to the given type (string to type).

	
register(type, adapter, converter)

	Register an adapter and converter for the given type.

	
register_adapter(type, adapter)

	Register an adapter (type to string) for the given type.

	
register_choice(type, choices)

	Registers an adapter and converter for a choice of values.
Values passed into adapt() or
convert() for type will have to be one of the
choices. choices must be a dict that maps converted->adapted
representations.

	
register_converter(type, converter)

	Register a converter (string to type) for the given type.

Recipes

Setting Values from the Command-Line

It can be convenient to provide users with the ability to override config
options using command-line switches. Here is an example of how that can
be done using argparse:

cfg = profig.Config()
cfg.init('server.host', 'localhost')
cfg.init('server.port', 8080)

parser = argparse.ArgumentParser()
parser.add_argument('-O', dest='options', action='append',
 metavar='<key>:<value>', help='Overrides an option in the config file')

args = parser.parse_args(['-O', 'server.port:9090'])

update option values
cfg.update(opt.split(':') for opt in args.options)

print(cfg['server.port']) # -> 9090

If you need to provide a list of available options to the user, you can
simply iterate over the config object:

>>> for k in cfg:
... print(k)
server.host
server.port

You can also restrict the options that can be set from the command-line to a
specific section:

args = parser.parse_args(['-O', 'port:9090'])
cfg.section('server').update(opt.split(':') for opt in args.options)

Multiprocess Sychronization

One way to synchronize a config file across multiple processes is to use a
lock file. This allows processes to make a modifications to a config file
in a safe way and have that change be reflected across all other processes
when they sync again.

Here is an example using the lockfile [https://pypi.python.org/pypi/lockfile] module:

>>> lock = lockfile.FileLock('.cfglock')
>>> with lock:
... cfg.sync()

Serialization

Because Config objects are based on dicts, it is easy to
read/write configs from a serialization format such as JSON or msgpack:

>>> import json
>>> s = json.dumps(cfg.as_dict())
>>> cfg.update(json.loads(s))

Format Strings

Config objects can be used directly in format strings in
several ways:

>>> '{0[server.host]}:{0[server.port]}'.format(cfg)
localhost:8080
>>> '{c[server.host]}:{c[server.port]}'.format(c=cfg)
localhost:8080
>>> '{host}:{port}'.format(**c.section('server'))
localhost:8080

In my opinion, this largely resolves the use cases for the interpolation
feature of the stdlib configparser [https://docs.python.org/3/library/configparser.html].

Development

All contributions to profig are welcome. Begin by forking the central
repository:

$ hg clone ssh://hg@bitbucket.org/dhagrow/profig

Coding Style

Officially, profig follows the guidelines outlined by PEP8 [http://legacy.python.org/dev/peps/pep-0008/].

Tests

All tests are in tests.py. They can be run with either Python 2 or
Python 3:

$ python2 -m tests
.................................
--
Ran 33 tests in 0.425s

OK
$ python3 -m tests
.................................
--
Ran 33 tests in 0.409s

OK

Release History

0.5.1 (2019-10-24)

	removed additional built-in formats (to avoid unnecessary bloat)

0.5.0 (2019-09-26)

	bugfixes

	experimentation with built-in TOML, YAML, and MessagePack formats

0.4.1 (2015-01-22)

	coercer support for datetime objects

	“strict” mode fixes

0.4.0 (2014-10-27)

	added “strict” mode to support safer configurations

	Windows registry format supports all types

	bugfixes/simplifications/clarifications

0.3.3 (2014-07-11)

	bugfixes

0.3.2 (2014-06-30)

	added support for the Windows registry

	bugfixes

0.3.1 (2014-06-04)

	fixed release package

0.3.0 (2014-06-04)

	byte-string values are read/written directly from/to sources.

	added support for Python 3.2.

	bugfixes

0.2.9 (2014-05-27)

	bugfixes

	new syntax for sections with both children, and a value: [section] = value

0.2.8 (2014-04-11)

	INI format is now the default

	custom ProfigFormat has been removed

	can now get/set comments for keys

	comments and whitespace read from sources are preserved

	filtering of keys when syncing has been removed (temporarily?)

0.2.7 (2014-03-29)

	improved INI support

	bugfixes

0.2.6 (2014-03-26)

	full unicode support

0.2.5 (2014-03-21)

	fix broken Python 3 compatibility

0.2.4 (2014-03-21)

	added support for Python 2

	bugfixes

0.2.3 and earlier (2014-03-12)

	initial releases

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	adapt() (profig.Coercer method)

 	(profig.ConfigSection method)

 	
 	as_dict() (profig.ConfigSection method)

C

 	
 	close() (profig.Format method)

 	Coercer (class in profig)

 	Config (class in profig)

 	
 	ConfigSection (class in profig)

 	convert() (profig.Coercer method)

 	(profig.ConfigSection method)

D

 	
 	default() (profig.ConfigSection method)

 	
 	dirty (profig.ConfigSection attribute)

E

 	
 	error_mode (profig.Format attribute)

 	
 	error_modes (profig.Format attribute)

F

 	
 	flush() (profig.Format method)

 	
 	Format (class in profig)

 	format (profig.Config attribute)

G

 	
 	get() (profig.ConfigSection method)

H

 	
 	has_children (profig.ConfigSection attribute)

I

 	
 	init() (profig.ConfigSection method)

 	
 	is_default (profig.ConfigSection attribute)

K

 	
 	key (profig.ConfigSection attribute)

 	
 	known_formats() (profig.Config class method)

N

 	
 	name (profig.ConfigSection attribute)

 	(profig.Format attribute)

O

 	
 	open() (profig.Format method)

P

 	
 	parent (profig.ConfigSection attribute)

 	
 	profig.INIFormat (built-in class)

 	profig.RegistryFormat (built-in class)

R

 	
 	read() (profig.ConfigSection method)

 	(profig.Format method)

 	register() (profig.Coercer method)

 	register_adapter() (profig.Coercer method)

 	
 	register_choice() (profig.Coercer method)

 	register_converter() (profig.Coercer method)

 	reset() (profig.ConfigSection method)

 	root (profig.ConfigSection attribute)

S

 	
 	section() (profig.ConfigSection method)

 	sections() (profig.ConfigSection method)

 	set_default() (profig.ConfigSection method)

 	
 	set_format() (profig.Config method)

 	set_value() (profig.ConfigSection method)

 	sync() (profig.ConfigSection method)

T

 	
 	type (profig.ConfigSection attribute)

V

 	
 	valid (profig.ConfigSection attribute)

 	
 	value() (profig.ConfigSection method)

W

 	
 	write() (profig.ConfigSection method)

 	(profig.Format method)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Behold, profig’s documentation!

 		
 Overview

 		
 Motivation

 		
 Features

 		
 Installation

 		
 Example

 		
 Resources

 		
 Guide

 		
 Sections

 		
 Initialization

 		
 Strict Mode

 		
 Automatic Typing (Coercion)

 		
 Defining Types

 		
 Adding Coercers

 		
 Using Coercers as Validators

 		
 Synchronization

 		
 Sources

 		
 Formats

 		
 INI

 		
 Windows Registry

 		
 Defining a new Format

 		
 Unicode

 		
 API

 		
 Config

 		
 Formats

 		
 Coercer

 		
 Recipes

 		
 Setting Values from the Command-Line

 		
 Multiprocess Sychronization

 		
 Serialization

 		
 Format Strings

 		
 Development

 		
 Coding Style

 		
 Tests

 		
 Release History

_static/up-pressed.png

_static/up.png

